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Abstract 

There is a long tradition of formal models of systems and processes for computation—

sequential and parallel, deterministic and non-deterministic—for example, finite state automata, 

Turing machines, and Petri nets.  Such abstract models can help characterize and thus provide 

insight into the behavior of real-world systems. 

Today, cloud computing has become of great interest technically and as it relates to business 

strategy and competitiveness.  However, while there are numerous informal (verbal) definitions 

of cloud computing, rigorous axiomatic, formal (mathematical) models of clouds appear to be in 

short supply: this paper is the first use of the term ―Axiomatic Cloud Theory.‖ 

Herein we propose a formal model of the cloud, suitable for computing but also applicable to 

other domains where dispersed resources are dynamically allocated to customers under a 

usage-sensitive pricing scheme: car rentals, airlines, taxis, electric utilities, bank loans, etc. 

Specifically, we propose mathematically precise cloud system and process definitions and cloud 

axioms, demonstrate a broad range of applications, derive some results, and comment on 

business implications of the results.  This rigorous model draws on mature disciplines: set 

theory, metric spaces, measure theory,  -algebras, graph theory, function spaces, linear 

algebra, etc.  This formalizes what may well be one of the most well known definitions of cloud 

computing from the National Institute of Standards and Technology. 

We define a cloud as a structure                satisfying five formal axioms: it must be 1) 

Common, 2) Location-independent, 3) Online, 4) Utility, and 5) on-Demand.    is space,   is 

time;         is a directed graph;   is a set of states, where each state combines 

assignments of resource capacity and demand, resource allocations, node location, and pricing; 

   is an initial state; and   is a transition function that determines state trajectories over time: 

mapping resources, allocations, locations, and pricing to a next state of resources, allocations, 

locations, and pricing.  This captures the interrelationships in a real cloud: capacity relative to 

demand can drive pricing, pricing and resource location drive allocation, allocation patterns can 

drive new resource levels. 

This approach may be viewed as a first step towards formal modeling of clouds.  There will no 

doubt be those who wish to apply, restrict, extend, or modify the proposed model.    It is to be 

hoped that this note initiates a constructive dialogue on formal models of cloud computing. 

                                                           
1
 Joe Weinman leads Communications, Media and Entertainment Industry Solutions for Hewlett-Packard.  The 

views expressed herein are his own.  Contact information is at http://www.joeweinman.com/contact.htm 
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1. Introduction  
 

Cloud computing has become one of the top priorities for CIO’s, and can have many benefits, 

including cost reduction, revenue growth, increased business agility, and enhanced customer 

experience.  There are perhaps as many definitions of ―cloud computing‖ as there are 

practitioners, commercial firms, institutions, and analysts in the field: one recent survey2 

reviewed 22 different definitions; no doubt there are many more.  Many of the definitions 

overlap, however, suggesting that there is potential for a common view.  One widely accepted 

definition that captures much of the essence of cloud computing has been refined by the U.S. 

National Institute of Standards and Technology: 

―Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction.‖3 

We use this and related definitions as a basis to propose here a formal model of the cloud.  

Such a formal model, in the spirit of the axiomatic theory of geometry delineated in Euclid’s 

Elements, Set Theory, Group Theory, Petri Net Theory, and many other fields, includes a set of 

mathematically precise definitions, axioms, and theorems.  In addition, we illustrate examples of 

application of the model, and comment on the business implications of these theorems.  The 

purpose of this note, however, is not to exhaustively derive the theory, but rather to argue—by 

proposing a model and attempting to demonstrate its value—that an axiomatic foundation for 

the cloud merits investigation and refinement.   

Such an endeavor is something of a balancing act.  It must be general enough to be applicable 

to a range of conditions, but specific enough not to be a theory of everything.  It must be 

relevant to cloud computing, but represent the truths about the behavior of structures and 

systems that resemble computing clouds, but are outside of the domain of computing.  It must 

be mathematically rigorous, without being unmanageable for the general reader.  Moreover, no 

doubt there will be readers that will agree with some definitions and axioms, disagree with 

others, wish to change some or suggest new ones.  As with Euclid’s 5th Postulate, such 

considerations led to spherical, elliptic, and hyperbolic geometry.  Moreover, increasing rigor in 

the underlying mathematics meant refinements to the axiomatic foundation of geometry 

including work by Hilbert, Birkhoff, and Tarski, and in set theory, Russell’s Paradox based on  

the Axiom of Specification led to the Zermelo-Fraenkel axiomatization. 

                                                           
2
 Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, Maik Lindner, “A Break in the Clouds: Towards a Cloud 

Definition,” ACM SIGCOMM Computer Communications Review, Volume 39, Number 1, January, 2009. 
3
 Peter Mell and Tim Grance, “The NIST Definition of Cloud Computing,” v. 15, NIST Special Publication 800-145 

(Draft), January 2011, at http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf. 
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Informally, we are modeling an environment that, for example, might look like this: 
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In words: there is a set of four nodes or vertices:                              .  They are 

connected by a network of three edges:                                            

      with associated distances as shown.  On Monday at noon,         and        both have 

resources, e.g.,         has 5 Cores and 3 GB, which we can denote as      .  At the same 

time,         needs 1 Core and 1 GB, which we can denote as a capacity of        .  1 

Core and 1 GB has been allocated to         from         by a resource allocation process.  

The price for these resources is one dollar per core per hour, and two dollars per GB per month.  

Twenty four hours later, conditions have changed:         needs more resources,      needs 

fewer.  Pricing has changed, perhaps to stimulate demand.  Resource availability has been 

changed, possibly because         is conducting scheduled maintenance or has had an 

unplanned outage. 

Generally, there will be a variety of interacting processes.  Due to the lack of resources in 

       ,         has been allocated resources from       .       has left his home in the 

Boston suburbs and taken a transpacific flight, and so his distance to Boston has increased by 

thousands of miles.  Note that many different interactions may result in this state change: 

demand processes may demonstrate price elasticity of demand; yield management may lead to 

dynamic pricing; shifts in demand, pricing, distances or resource availability may lead to shifts in 

how resources are allocated.  Note that in this model we can clearly distinguish between 

suppliers (       ,       ), and customers (       ,     ).  However, generally we may 

choose to have exchanges between market agents, or have some nodes act as intermediaries, 

distributors, aggregators, or transformation agents (e.g., manufacturers).  Also, while this model 

shows a single price per supplier, pricing may be more general, e.g., a single market price, or 
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more specific, e.g., price discrimination where each price is based on a specific supplier-

customer relationship. 

Keeping this informal scenario in mind, we will define in the coming pages a cloud as a 

specific structure that satisfies five cloud axioms.  Some formal background is assumed, 

which is overviewed in the appendix. 

2. Cloud Structure and Axioms 
 

We will now define the elements of the informal scenario addressed above more formally.  A 

cloud structure is 6-tuple               .  Later, we will couple this structure with 5 axioms to 

define a cloud.  Briefly,   is space,   is time;         is a directed graph;   is a set of states 

combining resource capacity and demand, resource allocations, node location, and pricing;    is 

an initial state; and   is a transition function that maps a graph, resources, allocations, locations, 

and pricing to a next state of resources, allocations, locations, and pricing.  One may recognize 

some aspects of finite state automata, Turing machines, Petri nets, and other constructs in this 

model.  To be more precise,  

Definition: a cloud structure is a 6-tuple               , where 
 

Space         is a metric space, where 

  is a set of locations, and 
  is a distance metric,         

 ; 

 

Time              is a measure space with a strict total ordering and least element 

    , where 

  is a set of periods, 
  is a  -algebra over  , 
       

 is a measure on  , and 

  is a strict total ordering on  ; 
 

Network          is a simple, oriented graph, with no self-loops or multiple edges, 
where 

  is a set of vertices, and 
  is a set of edges,      , and         implies         and        ; 
 

              is a set of states, where each                     , where 

         is a resource function, 

         is an allocation function, 

        is a location function, and 

        is a pricing function, where   is the function space            

  
    

    ; 
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      is a transition mapping; and 
 

    , where         . 

 

This definition is formally rigorous, but perhaps not optimally comprehensible, so we expound 

further on the elements. 

Space         is a metric space, where   is a set of locations, and   is a distance 

metric,         
 ; 

Metric spaces are merely sets with non-negative distances defined between their 

elements. 

One such space is 3-dimensional space   , with a ―Euclidean‖ metric defined on it, i.e., 

the distance   between   and   where              and              is just        

          
           

           
 . 

Another such space is a 2-dimensional plane    with a ―Manhattan‖ metric defined on it, 

after the number of city blocks you’d have to walk (no diagonals allowed).  This is just 

      = |       |      . 

Another metric space is the points of a sphere,           
    

    
    , and    is 

the shortest great circle route.  

Generally,     ,      but we may also have                                       

―Distance‖ is a dimensionless quantity as used here, but may represent miles, 

milliseconds of delay, router hops, or other characteristics.  

Time              is a measure space with a strict total ordering and least element 

    , where   is a set of periods,   is a  -algebra over  ,        
 is a measure on  ,  

and   is a strict total ordering on  ; 

Measure spaces are formally defined constructs.  For the purposes of this document, the 

only important thing is that   is a set of time periods, each of which may be infinitesimal 

instants, e.g.,          may correspond to the uncountably infinite number of ―real‖ 

instants in a 60 second interval, or   may be abstract steps                , or may be 

days {―Monday the 3rd,‖ ―Tuesday the 4th,‖Wednesday the 5th,‖ …}.   , which is beyond 

the scope of this paper, is basically a nonempty set of subsets of   closed under union 

and complement with respect to  , and importantly,   is a measure on  , or to put it 

another way, is a measure on subsets of  .  Let     , and let             .  Then 

      might be     .  Or, let                                           , then 

      might be 73 (hours).  As with  , in this model   is dimensionless (although we often 
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conceive of distance in, say, feet and time in, say, hours).  ―<‖ is a strict total order on  , 

i.e., a way of formalizing ―before‖ and ―after.‖ 

  may be a counting measure, e.g., 3 time periods, or a Lebesque measure, such as 

duration, e.g., 5 hours.  Normally,   is the symbol for a measure but we use   to avoid 

confusion with the symbol for statistical mean  , which also happens to be the symbol 

for a Petri net marking. 

Network          is a simple, oriented graph, with no self-loops or multiple edges, 

where   is a set of vertices, and   is a set of edges,      , and         implies 

        and        ; 

The graph is ―oriented,‖ which essentially means directed rather than undirected.  The 

subtle difference is that each edge is still a directed arc, but this does not impact 

connectedness and does not in any way limit the possible allocations of resources.  

Instead, it establishes an orientation for which way an allocation ―flows.‖    is simple, i.e., 

no self-loops or multiple edges.  Typically   is finite, but in some models we may allow   

to be infinite. 

If        , then   is a predecessor of   and   is a successor of  .  We will use the 

notation    (for inputs) to indicate the set of vertices that are predecessors of  , i.e., all   

such that        , and    (for outputs) to indicate the set of vertices that are 

successors of  , i.e., all   such that        . 

              is a set of states, where each                     , where          is 

a resource function,          is an allocation function,         is a location function, 

and         is a pricing function, where   is the function space              
  

  
    ; 

Any     is a composite state made up of a resource assignment, an allocation 

assignment, a location assignment, and a pricing function assignment. 

A resource assignment specifies a specific resource vector for each vertex.  Each 

resource vector is taken from   , where each dimension characterizes a different 

resource.  For example, <1,2,4> may stand for 1 database instance, 2 servers, and 4 

storage arrays, or in a different context, 1 hotel room, 2 beds, 4 pool passes.  Negative 

values indicate requirements, rather than capacity.  For example, <-1,-2,-1> may 

indicate that I need 1 database instance, 2 servers and 1 storage array. 

An allocation defines a ―flow‖ along the oriented edge connecting two vertices.  Typically 

a flow will occur from a vertex with a positive value to a vertex with a negative one, but 

this is not always the case. 

An allocation is conceptually different than a network ―flow,‖ in that allocated resources 

need not move, and bidirectional (i.e., full duplex) allocations may occur along an edge, 

signifying bilateral trade.  Moreover, unlike classic network flows where nodes are only 
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of value in terms of routing flows, in the cloud model proposed here all nodes may have 

additional resources or demands in any given period.  In a classic network flow model, 

there is only one node (the source) with all capacity, and one other node (the sink) with 

all demand.   Nevertheless, we will often use the term ―flow.‖ 

A location assignment tells us ―where‖ the vertex is among the locations  .  From this, 

we can derive a distance along or length of an edge        , using the distance metric 

 , specifically via              .   

While often locations and thus distance are fixed, rather than a function of time, mobile 

users (and even mobile service delivery nodes) may cause locations for nodes to move, 

and therefore for location and distance to be time-dependent.  This is true of mobile 

cellular users, where the customers move, but also of taxi services: where both 

customer nodes and supplier nodes move: picture someone walking down the street 

trying to catch one of the many cabs that is continuously in motion. 

Finally, a particular pricing lets us calculate total prices, and thus make economically 

optimal allocation decisions.  For a given state       where           , each edge 

    has a pricing associated with it, which may be ― ‖, i.e., ―free.‖  Such a pricing is 

associated with the edge, not the node, because there may be ―price discrimination,‖ 

where a particular supplier charges different customers differently.  Also, pricing may 

change over time: this is so-called ―dynamic pricing.‖  Due to this, each particular state   

specifies a pricing function    that defines a correspondence between each edge and its 

pricing (which is a function, not a value), so the pricing function     is actually a mapping 

whose domain is edges and whose codomain is the function space consisting of all the 

possible functions that can be defined using allocations (r-dimensional real vectors), 

distances (non-negative reals), and times (also non-negative reals).  (As an aside, this 

function space turns out to be a vector space as well, but a completely different vector 

space than   ).  In effect,    is a pricing function function. 

Many different pricings are conceivable: free, flat-rate, distance-sensitive, pay-per-use, 

two-part tariffs, block-declining, and so forth.   Often, pricing will be based on the size 

and composition of the allocation.  Consequently, a pricing might be of the form     

    , where   is a price vector,   is the allocation on the edge, ― ‖ is the vector inner 

product, and      is the duration of the time period, as quantified by the measure  .  

Clearly   and   need to be of the same dimension  .  This type of pricing is often 

encountered: dollars per kilowatt-hour for electricity, dollars per room-night for hotels, 

dollars per car-day for rental cars, dollars per server-hour for computing.  Another type of 

pricing might be linearly distance-sensitive, where the pricing is of the form   , where   

is a constant and   is the distance.  There also may be combinations of these: the 

function space is closed under addition. 

A price for an edge at a specific time results from evaluating the pricing for that edge at 

that time (and thus state) using the allocation of the edge at that time and distance 

between the incident vertices of the edge at that time.  We will discuss this more later.  
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Often, in network problems, one tends to talk about ―costs.‖  We deliberately use ―price‖ 

to connote a commercial focus rather than an internal cost-optimization focus. 

We can aggregate prices over all times in   for a given edge, or over all edges in   at a 

given time, or for the entire cloud structure across all edges given the locations of the 

nodes and all allocations given the resourcing of the nodes.   

The state is a combination of elements for two reasons.  One, it takes several 

components to capture the richness of the cloud model and thus a particular state.  

Secondly, while the components may be independent, some or all may interrelate.  For 

example, aggregate supply and demand may impact price.  Price may impact addition of 

new capacity.  Distance, i.e., relative location, may impact price, and thus the allocation 

of customers to suppliers.  Although ―allocation‖ sounds like something done by a 

management process, we may also think of it as an emergent result caused by a set of 

independent decisions made by each node acting as rational, self-interested agent. 

      is a transition mapping; 

We could also state this as   maps a particular time into a particular state: given any 

time,   gives us a specific state.  Our definition of the transition function departs 

somewhat from traditional Turing machine or Petri net definition, although it 

encompasses those models. 

In the simplest case, we may define   to be constant over time:              . 

Or we may define the elements of   strictly as functions of time.  For example,   

          and        . 

Or, in accordance with traditional discrete dynamic models and automata, we can effect 

a discrete state transition scheme based on some recursive function   by letting 

       
              

                     
  

Generally, we can have an arbitrary function defining the trajectory of  , typically based 

on a computable, or recursively enumerable, function.  In other words, the rules defining 

a transition may be arbitrarily complex.  They also may be nondeterministic (stochastic), 

and either memoryless (e.g., Markov processes) or nonmemoryless. 

    , where         . 

In other words,    is the initial state, which is the state at time   .  This may be 

redundant, in that if the mapping   is fully defined, we can determine   .  However, if   is 

recursively defined, as above, we will need to have a first    specified to ―prime the 

pump.‖ 
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Note that, as defined, a cloud ―structure‖ encodes execution.  Since we have (perhaps 

overzealously) striven for rigor, we also need to consider readability and usability.  

Consequently, we will often use shorthand to describe various situations. 

The transition mapping   maps out a trajectory of the state space over time, beginning with    at 

  .  For any    , we can determine a          Consequently, we can determine the 

components of  .  We will use the shorthand of       to refer to       where         , and 

similarly for              and         And we will refer to                 and      when we wish 

to characterize the time-varying behavior of these functions, including when we characterize 

them by their distributions and statistics.  Moreover since these are mappings from either 

vertices   of   or edges   of  , we can specifically refer to       or       when    , or we can 

refer to                       or       when       . 

We will use    as shorthand for                    . 

When resources are positive, generally we refer to the value as ―capacity‖ and the node as a 

―supplier,‖ when they are negative, we generally refer to the value as ―demand‖ and the node as 

a ―customer.‖  We will sometimes write    or       as shorthand for     or        respectively.  

When the vector includes positive and negative values, we may call the node a ―trader.‖ 

This diagram helps illustrate many of the elements above. 
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3. Examples 
 

The cloud structure model can be used to model many different scenarios.  The diagram below 

shows a straightforward supplier-customer model, where the supplier has resources, and the 

customer wants them.  Or each may have something of value but want what the other has.  This 

may be viewed as a ―trade‖ or barter situation.  Of course, one resource may be money, in 

which case a ―sale‖ is actually an exchange.  Or, both resources may be money, in which case 

this is a currency exchange.  Recall that the direction of the arrow orients the resource flow, but 

doesn’t constrain positive and negative resource flows in any way.  Another case is an 

intermediary.  One example might be a travel agent, where the suppliers are airlines and the 

customers are travelers. 

Supplier
<10>

Customer
<-10>

Supplier
<10>

Inter-
mediary

<0>

Customer
<-3>

<10,-10>

Trader
<10,-10>

Trader
<-10,10>

Supplier
<7>

Supplier
<4>

Customer
<-2>

Customer
<-6>

 

Variations of the intermediary model exist: distributors such as manufacturer’s representatives, 

and buyer’s agents: 
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Supplier
<10>

Distributor
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Customer
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Customer
<-1>
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<-1>
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Agent

<0>
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Supplier
<10>
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Sometimes, cloud structures can be clearly partitioned into a simple, bipartite structure, with 

clearly delineated suppliers with resources, clearly delineated customers with demands (i.e., 

negative resources), and always positive flows from suppliers to customers: 

Customer
<-1>

Customer
<0>

Customer
<-12>

Supplier
<2>

Customer
<-3>

Supplier
<5>

Supplier
<3>

Supplier
<7>

 

An integrator may take a different resource from each of multiple suppliers, and sell the 

assembly.  A value-added reseller may take one product, service, or component, and add in 

―value,‖ i.e., a different resource, and deliver the total to an end-customer. 
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VAR
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In the ―intercloud‖ scenario, such as the electrical grid or the Reservoir4 Cloud Computing 

project, there are multiple service providers, each of which services customers.  However, if a 

provider has insufficient resources, it may acquire capacity temporarily from another provider. 

Service
Provider

R1(t)

Service
Provider

R2(t)

Service
Provider

R3(t)

Customer
D6(t)

Customer
D7(t)

Customer
D8(t)

Customer
D5(t)

Customer
D4(t)

“Intercloud”

 

Finally, there is the general case of a collaborative environment, firm, market or economy, with 

many participants interacting in many complex ways. 

                                                           
4
 B. Rochwerger, et al., “Reservoir—When One Cloud Is Not Enough,” IEEE Computer, March 2011, pp. 44-51 



Axiomatic Cloud Theory 

 

© 2011 Joe Weinman.  All Rights Reserved. Page 13 
 

Partiticipant

Partiticipant

Partiticipant Partiticipant

Partiticipant

Partiticipant

Partiticipant

Partiticipant

Partiticipant

PartiticipantPartiticipant

 

4. Axioms 
 

The notion of ―axiom‖ is not as clear as one might wish.  It sometimes means logical tautology, 

in the sense of an inarguable truth, common notion, or fundamental principle of logic.  We use it 

here in the sense of a restriction, condition, or property, in the same way that, say, the 

associativity axiom for groups restricts the collection of all pairs of sets and operators to only 

those which are associative. 

We stipulate 5 cloud axioms, (which conveniently spell ―C.L.O.U.D.‖:  Common, Location-

independent, Online, Utility, and on-Demand.  A cloud then, is a cloud structure that satisfies 

these five axioms.  These may also be considered to be criteria, conditions, properties, 

restrictions, postulates, etc. 

Following are some necessary definitions and the development of an axiomatic model for the 

cloud. 

Definition: An allocation   is feasible at time   if and only if 

 

            

    

              

    

   

  

To put it simply, some resources may not be allocated, but, in each dimension of    , the sum of 

the inflows to a node together with the resources at that node must equal or exceed the sum of 
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the outflows from that node for the allocation to be feasible.  For the special case of a feasible 

allocation where all the sums equal zero, we will call it perfect.  If not feasible, we will call it 

insufficient. 

Definition: A cloud structure is completely feasible if for all    ,      is feasible. 

In other words, the structure is completely feasible if there is a feasible allocation at each time 

period. 

Definition: Two edges       are coincident if they share a vertex, i.e.,     , such that     

and    . 

This is the traditional graph-theoretic definition of edge adjacency or coincidence. 

Definition: Given      two nonzero flows       and       are coincident in space if       are 

coincident. 

In other words, flows that are coincident in space exist on coincident edges. 

Definition: Given              , two nonzero flows        and        are coincident over 

time if       are coincident. 

While such flows may not happen to be coincident at the same time, in other words. 

For the next definition, let us assume that     and    , and without loss of generality, let us 

assume that      and     , i.e., that   is a predecessor of both   and  , since   is oriented.  

We can logically flip directions of arcs and take the inverse of the allocation without altering 

anything. 

Definition: Two flows                       and                       on       

respectively where     and     are commonly sourced if: 

1) they are coincident in space or coincident over time; and 

2) there is an          such that either 

a)     ,     ,      , and       

b)     ,     ,      , and       

c)     ,     ,      , and       

d)     ,     ,      , and      . 

We are actually saying something very simple, but the four variations of which way the oriented 

edges may point makes it hard to describe.  In effect, two flows are commonly sourced if there 

is a single node that is providing at least one positive resource to two other nodes, either at the 

same time, different times, or both. 
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We will define five key properties which will become axioms.  Our first key definition: 

Definition of “Common:” A cloud structure                 is common if and only if there 
are at least two nonzero flows that are commonly sourced. 

 

This definition formalizes the notion of ―resource sharing‖ or ―common pools.‖  Without the 

definition, all nodes would effectively be ―paired off‖ into permanent, private or captive 

―customer-supplier‖ or ―exchange‖ relationships, or linear chains. 

Now let’s turn to prices and pricing.  This is a multilayered concept, which we will build up a step 

at a time. 

Definition: Let the edge price at time  ,        be defined as the evaluation of the pricing function 

for that edge        at that time, i.e.,                                 ), where      

     , i.e., the function that is the image of the edge   under   , where         

An edge price at time  ,        may be positive, in the traditional sense of a price, or negative, 

showing a net negative value for a set of positive and negative allocations (i.e., outbound and 

inbound trades) in a resource allocation vector. 

An edge price at time t,        may also be negative, for example, if we are modeling credits for 

SLA violations, or if there is a positive pricing function but the orientation of the edge is inverted 

relative to the allocation flow. 

We can aggregate all the prices across all the edges at a given time: 

Definition: We define the total price at time  ,       to be 

             

   

 

And finally, we can sum or integrate the total price across all of time: 

Definition: The total price of a cloud structure is: 

         

   

 

In the next definition, recall that    stands for the set of all (possible) mappings from   to  . 

Recall that a state                .  We can generate a related state by substituting one or 

more of the elements, e.g.,                 .   
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Definition of “Location-independence:” A completely feasible cloud structure 
               is location-independent if and only if     , if                      and 

the total price at time   is       , then       ,        , such that if                 ,     is 

feasible and                 

 

In other words, if location-independence holds, then if there is at least one feasible allocation at 

time   given a particular configuration of locations, then given any other possible location 

configuration, there still will exist some feasible allocation (which may or may not be the same 

one) that doesn’t cost any more, and actually might cost less. 

There is more than one way this can happen.  One is that pricings for this cloud don’t include 

distance as a parameter, and thus location doesn’t matter.  But another is that the topology of 

nodes with resources is sufficiently distributed and capacitated, and the distance function 

  appropriately structured, such that we can ―rehome‖ nodes with demand to get their flow from 

a sufficiently nearby node in such a way that the total price at each time is not negatively 

impacted. 

Definition of “Online:”  A cloud structure                is online if and only if   is weakly 
connected, i.e., for       , there is a semipath from   to  . 

 

 ―Weakly connected‖ means that, ignoring the direction (or orientation) of each edge, there is 

always a path between any two vertices.  More formally, this is called a ―semipath,‖5 as opposed 

to a directed path, where we can follow the direction of the arrows. 

Simply put, there are no isolated customers, suppliers, or traders, nor are there isolated 

components. 

Definition: A pricing function   at a time   on an edge        denoted by 

                           is linear in   if and only if                                

                          . 

Definition of “Utility:” A cloud structure                is utility if and only if          , 
             is linear in       and                 . 

 

In other words, there ain’t no such thing as a free allocation, and price is proportional to 

quantity.  The final condition above, i.e.,                  ensures that      is not just the 

                                                           
5
 Frank Harary, Graph Theory, Addison-Wesley, 1969. 
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trivial function          Note that pricing may still be utility even if it is dynamic: the constraint is 

that at any given time, price is proportional to allocation. 

Definition of “on-Demand:” A cloud structure                is on-Demand if and only if it 
is completely feasible.   

 

This may seem overly simplistic, but it specifically implies, for any node     and for any 

       , if               and if                                 
   then 

                                
  . 

In other words, even if the demand of a node changes instantaneously, the cloud ―responds‖ to 

meet that demand.  (Note that any resource vectors in   or   can have values representing 

supplies, demands, or mixed.) 

Now we can formally define a cloud: 

Axiomatic Definition of a “Cloud”: A cloud is a cloud structure                satisfying 5 
axioms:  

1. Common,  
2. Location-independent,  
3. Online,  
4. Utility, 
5. on-Demand. 

 

Note that this definition of cloud—a cloud structure coupled with these five axioms—provides a 

precise characterization of the key, intuitive notions in many definitions, such as the NIST 

definition of cloud6: 

[Cloud Structure:] 

―Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction. 

This cloud model promotes availability and is composed of five essential characteristics, 

three service models, and four deployment models.‖ 

[Axioms:] 

Essential Characteristics: 

                                                           
6
 Mell and Grance 
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On-demand self-service. A consumer can unilaterally provision computing capabilities, 

such as server time and network storage, as needed automatically without requiring 

human interaction with each service’s provider. 

Broad network access. Capabilities are available over the network and accessed 

through standard mechanisms that promote use by heterogeneous thin or thick client 

platforms (e.g., mobile phones, laptops, and PDAs). 

Resource pooling. The provider’s computing resources are pooled to serve multiple 

consumers using a multi-tenant model, with different physical and virtual resources 

dynamically assigned and reassigned according to consumer demand. There is a sense 

of location independence in that the customer generally has no control or knowledge 

over the exact location of the provided resources but may be able to specify location at a 

higher level of abstraction (e.g., country, state, or datacenter). Examples of resources 

include storage, processing, memory, network bandwidth, and virtual machines. 

Rapid elasticity. Capabilities can be rapidly and elastically provisioned, in some cases 

automatically, to quickly scale out, and rapidly released to quickly scale in. To the 

consumer, the capabilities available for provisioning often appear to be unlimited and 

can be purchased in any quantity at any time. 

Measured Service. Cloud systems automatically control and optimize resource use by 

leveraging a metering capability [typically through a pay-per-use business model] at 

some level of abstraction appropriate to the type of service (e.g.,storage, processing, 

bandwidth, and active user accounts). Resource usage can be monitored, controlled, 

and reported, providing transparency for both the provider and consumer of the utilized 

service.‖ 

Sometimes, a cloud structure will not meet all the axioms.  We can call such a structure a 

semicloud.  Often, we will be interested in simple structures consisting of only suppliers and 

customers, which we can call a simple cloud: 

Definition: a cloud structure                is simple when         is bipartite, i.e.,     

       , and            and    .  Moreover,             and     

      . 

In effect, there are customers and suppliers, suppliers have resources and customers need 

them, and each group only interacts with members of the other.  A simple cloud is then an entity 

that has a simple cloud structure and satisfies the cloud axioms.  One other definition that will 

come in useful in the next section is this: 

Definition: An allocation   is sole-sourced at time   if and only if 

                       and              
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5. Research Agenda 
 

This definition of the cloud is at the intersection of various modeling approaches.  We have 

described a few, for example Turing and finite state machines.  In addition, there are a variety of 

problems in operations research that are related: integer programming, linear programming, 

multiperiod resource allocation7, multiperiod stochastic optimization and multiperiod stochastic 

programming8, network flows and min-cut / max-flow algorithms, and the like. 

We will outline proofs of some theorems to show the range of results that can be derived from 

this model.  Elsewhere we have provided extensive proofs of a number of them. 

Given a cloud, will be interested in solving different sorts of problems.  These may fall into a 

number of general categories.  We are interested in either the solution, or a parametric solution, 

or an assessment of the computational complexity of the solution.  Here’s a partial list: 

 Characterization and Isomorphism – it is clear that apparently different clouds may be 

identical.  For example, relabeling vertices may result in a nominally different cloud, but it 

will not have any different behavior.  Also, for any edge, reversing the orientation of the 

edge and negating the allocation for that edge results in no change to feasibility.  One 

can also show equivalence of certain conditions.  For example, the existence of a 

feasible allocation for a (weakly connected) component            is equivalent to the 

condition that        
  .  The proof can be constructed along similar lines to the Ford-

Fulkerson algorithm9 to find the maximum flow in a network with a source and a sink. 

Given that        
  , we start with all allocations set to           .  If this is a 

feasible allocation, we terminate.  Otherwise, we observe that if there is a node, say,   . 

with net demand (i.e., it is under-resourced, accounting for its own capacity and net 

inflows and outflows) in a specific dimension in    , there must be a node    somewhere 

with a net capacity in that dimension.  Since    is weakly connected, there is always a 

semipath from    to   , so we augment the current allocations along the path by the 

minimum of either the needed resources or the maximum amount of excess resources at 

the node.  For each interior node along the path, there is no net change in status.  If 

there is still net demand at     we find another node with net capacity. We can conduct 

this process independently, dimension by dimension, and the procedure will terminate 

successfully within        steps, each of which has a polynomial time bound. 

 Optimization Problems – a broad range of problems in operations research in general 

and linear programming in particular deals with structures such as these.  The 

transportation and transshipment problems10 relate to finding a cost-optimal allocation, 

                                                           
7
 Hanan Luss, “Optimization of a Multiperiod Resource Allocation Model,” Operational Research Quarterly, Vol. 25, 

No. 1, March, 1975.  
8
 Norio Hibiki, “Multi-period Stochastic Optimization Models for Dynamic Asset Allocation,” April 30, 2003, at 

http://www.ae.keio.ac.jp/lab/soc/hibiki/profile_2/INFORMS_2003_ModelComparison.pdf . 
9
 Shimon Even, Graph Algorithms, Computer Science Press, 1979. 

10
 Frederick Hillier and Gerald Lieberman, Introduction to Operations Research, 3

rd
 Edition, Holden-Day, 1980. 

http://www.ae.keio.ac.jp/lab/soc/hibiki/profile_2/INFORMS_2003_ModelComparison.pdf
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given multiple customers and multiple suppliers and a linear cost for each pairwise route 

between customers and suppliers. 

 Satisfiability and Assignment – is there an assignment, that is, a feasible allocation  , 

of customers (      ) to service nodes (      ) such that the demand from each 

customer may be met by the service nodes?  Usually an assignment is intended to be a 

matching, that is, each customer is matched exactly with one and only one supplier, 

however, one can consider variations where each customer is assigned to a single 

supplier (i.e., sole-sourced), but any supplier may service zero or more customers. I’ve 

shown elsewhere11 that under these conditions, even if the cloud is simple, as long as all 

allocations are sole-sourced, and the quantity varies by customer, the problem is NP-

complete12.  If quantity doesn’t vary by customer, this is polynomial-time transformable 

into the maximum cardinality bipartite matching, or marriage problem, for which a P-time 

algorithm has been devised by Hopcroft and Karp13, and if more than one service node 

may satisfy a given customers demand, the problem reduces to the simple decision 

problem of whether the aggregate quantity of resources is greater than  , since   is 

connected and the direction of an arc doesn’t restrict the net allocation.  There are also 

optimization forms of the problem where we look for a minimum cost solution. 

 Cloudonomics and Optimization – we may also ask economic optimization questions, 

such as finding an optimal allocation given the pricing function  .  Elsewhere, I’ve 

shown14 that whenever      fluctuates, a utility solution (  is linear in allocations) or 

hybrid solution of utility and flat-rate can be economically optimal.  I’ve also shown15 that 

there is value to demand aggregation.  If   customers have demand 

                  , and each       has mean     and variance   , then each has a 

coefficient of variation of 
 

 
, but the aggregate       

 
    has mean     and variance 

    , and therefore has a coefficient of variation of only 
   

 
.  In other terms, a penalty 

function due to overcapacity or undercapacity can be reduced to be 
 

  
 of its 

unaggregated value. 

 Scheduling and Sequencing – There are a variety of scheduling problems that are 

known to be intractable, for example, job sequencing on one processor with release 

times and deadlines, sequencing to minimize tardy tasks, multi-processor scheduling, 

                                                           
11

 Joe Weinman, “Cloud Computing is NP-Complete,” Feb. 21, 2011, 
http://www.joeweinman.com/Resources/Joe_Weinman_Cloud_Computing_Is_NP-Complete.pdf. 
12

 Michael R. Garey and David S. Johnson, Computers and Intractability, W.H.Freeman & Co., 1979. 
13 J. Hopcroft and R. Karp, “An  

 

  Algorithm for Maximum Matching in Bipartite Graphs,” SIAM J. Computing, 1975, 

pp. 225-231. 

14
 Joe Weinman, “Mathematical Proof of the Inevitability of Cloud Computing,” January 8, 2011, 

http://www.joeweinman.com/Resources/Joe_Weinman_Inevitability_Of_Cloud.pdf. 
15

 Joe Weinman, “Smooth Operator: The Value of Demand Aggregation,” February 27, 2011, 
http://www.joeweinman.com/Resources/Joe_Weinman_Smooth_Operator_Demand_Aggregation.pdf. 
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resource constrained scheduling, job-shop scheduling, and so forth.16  The transition 

function can encode various constraints and parallelization strategies, and thus create a 

new class of problems on the cloud. 

 Coverage – in graph theory, the vertex cover problem, which is one of the core NP-

complete problems, may be stated as ―is there a set of vertices      ,        such 

that        implies either      or     ?‖  In addition, we may be interested in 

what might be called the ―cloud cover‖ problem, where we are looking to ensure that all 

allocations at all times keep λ   ,so that all customers are within a given distance.  

Megiddo and Supowit have shown that this general problem is intractable as well. 17 

 System Dynamics – Given that customers are active, intelligent agents, having a 

choice of service nodes with different price plans, and a random initial assignment of 

customers to service nodes with different plans, how will the system evolve.  

Elsewhere18, I’ve shown that starting from a random allocation    of customers to flat-

rate and utility priced service providers in state   , rational light users on flat-rate plans 

will defect (be re-allocated via the transition function  ) to pay-per-use plans, and 

rational heavy users will defect to flat-rate plans.  Over time, the price of the flat-rate 

plans will increase, driving continued imbalances in favor of the pay-per-use plans.  A 

terminal state is reached where only the heaviest users remain on the flat-rate plans. 

 Performance – given performance, throughput, latency, or response time objectives, 

and given a distribution of customers, how can different choices of service node 

architectures and resourcing impact these objectives.  Elsewhere19 I’ve shown how 

dispersion can be traded off against consolidation.  Briefly, more service nodes reduces 

the expected or worst case value between a customer node and a service node, but 

greater consolidation improves the ability to aggregate and thus smooth demand 

variation. 

 Fairness, Liveness, Reachability – given an allocation over time, particularly one that 

is partly or continuously insufficient, how do we ensure that each customer gets a fair 

share of the resources that are available.  How do we evaluate whether nondeterministic 

transition, location, and allocation rules may lead to states with no possible allocation, 

whereas other trajectories may lead to completely feasible allocations. 

                                                           
16

 Garey and Johnson 
17 N. Megiddo and K. Supowit, “On the Complexity of Some Common Geometric Location Problems,” SIAM J. 

Computing, Vol. 13, No. 1, February 1984.  

18
 Joe Weinman, “The Market for Melons: Quantity Uncertainty and the Market Mechanism,” September 6, 2010, 

http://www.joeweinman.com/Resources/Joe_Weinman_The_Market_For_Melons.pdf. 
19

 Joe Weinman, “As Time Goes By: The Law of Cloud Response Time,” April 12, 2011, 
http://www.joeweinman.com/Resources/Joe_Weinman_As_Time_Goes_By.pdf. 
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6. Extensions, Restrictions, and Modifications 
 

There are numerous definitions of Petri nets that are equivalent to each other.  There are also 

numerous extensions, restrictions and modifications that have modified the original definition, 

often to meet specific cases: Time Petri nets, inhibitor arcs, zero-testing, constraints, etc.20 

Similarly, for Turing machines21, there are numerous variations: single tape, multitape, 

pushdown stack, etc., that are all equivalent, and, per the Church Hypothesis, equivalent to 

other computing models and our intuitive notion of a computation. 

No doubt a reader of this paper will agree with some elements of the proposed model, 

grudgingly allow some, vehemently disagree with some, and question obvious omissions.  Petri 

net models have been through dozens, if not hundreds, of such modifications.  Here are some 

natural extensions. 

Transformation 
 

One logical extension is the notion of a transformation.  Consider modeling a bakery, for 

example.  It has inputs of flour, eggs, butter, sugar, water, and energy, but may have outputs of 

bagels, brioches, and butterfingers.  In a cloud computing context, one may be ―buying‖ an 

application, but the input resources are servers, storage, and so forth.  Two variations suggest 

themselves.  In a first, an     transformation matrix    applies to a node and its inputs, and 

we now define feasibility as: 

              

    

              

    

   

One can set    equal to the identity matrix for those nodes without transformations.  However, 

such a node-based approach may fail in modeling some types of systems, because applying the 

transformation only to the ―input‖ edges implies that there is a unique classification of such an 

edge as an input edge.  However, we would like to preserve the equivalence that any input edge 

   with allocation     is equivalent to an output edge    with allocation            The node 

based approach fails because an allocative flow that would have had the transformation    

applied no longer does, as it is now classified as an output edge rather than an input edge, 

destroying the equivalence relationship: we can’t guarantee that      
  . 

Consequently, a better approach is to apply transformations on the edges, rather than at the 

nodes, even if many or most or all edges have an identical transformation.  Flour, yeast, and 

water, by this convention, are not transformed into bread at the bakery, but, in effect, on the trip 

                                                           
20

 James L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981. 
21

 John E. Hopcroft, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-
Wesley, 1979. 
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from the bakery to the oven.    is then a mapping from the set of edges to the set of     

matrices on the reals, and for       when      and        we can equivalently represent 

things as        
     ,      and            Then, the correct form for the feasibility 

relationship, whose semantics connote conservation, is: 

              

    

          
        

    

   

As before, setting    , the identity matrix, preserves the status quo ante. 

Resource Storage Over Time 
 

We’d occasionally like to store variables.  For example, one might define a resource level to be 

the highest level of demand ever previously reached.  Some transition functions, however, 

namely, those based on recursive functions, only consider the prior state, not the entire set of 

prior states.  There are other tricks that one can use, though.  For example, it has been shown 

that the finite state control of a Turing machine can store a finite amount of information.  For 

example, suppose we want to store a bit  , which can be   or  .   One way to do this is to 

replicate the set of states  , into, in effect,             . 

However, it should be evident that we can create one or more dummy nodes that can store an 

infinite amount of information.  For example, one node   can store a variable   by letting   set 

         to ―write‖ the variable  , and then ensuring that   sets                 , to store the 

value.  It should be apparent that by various encoding strategies, an infinite number of variables 

may be maintained, even if there is only a single dummy node and   is  .  Moreover, we can 

―neutralize‖ the overall effect of this dummy variable in global allocation questions, but pairing it 

with another dummy variable that is its inverse:                 together with an allocation 

between them,                 with zero cost. 

Virtualization 
 

While virtualization is no doubt an important technology, from a formal modeling perspective we 

can treat its existence either as an additional resource and/or consider that it is implicitly 

contained in the current proposed cloud structure via the notion that resource quantities may be 

members of the reals, not just integers: instead of only allocating 1 server or 2 servers, we can 

allocate 1.37 servers. 

Aggregation 
 

We have not specifically distinguished between customers and end-users, or between service 

providers and their data centers or ―supply centers.‖  We can disjointly partition  , or  , into 

clusters and individual nodes may be clustered into ―service providers‖ and ―customers,‖ where 

each service provider has a set of service nodes, and each customer has a set of users.  Of 
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course, we can partition   however we want, e.g., into federations of suppliers with availability 

zones containing service nodes, and buying cooperatives comprising firms with divisions or 

locations comprising users. 

This approach can be used to model what NIST calls ―deployment models,‖ e.g., private clouds, 

public clouds, community clouds, and hybrid clouds.  In fact, the formal model of a cloud 

described herein may be useful in generating precise definitions of these deployment models, 

although one may argue that they are the domain of legal and contractual concerns and the 

theory of the firm. 

 

7. Business Implications 
 

We note that there are numerous business implications that can be explored from this type of 

model, which I’ve shown elsewhere.  Here are a few examples. 

Under assumptions of two providers, one of which is flat-rate based on the average of its 

customers demands, and the other is pay-per-use in accordance with the utility axiom, and 

customers with dispersed levels of demand, a transition function   will lead to system dynamics 

effects wherein ―virtually all‖ customers defect to the utility pricing scheme.22  This has 

implications for services pricing for rational customers.  Moreover, the total spend will not shift.  

This has implications for revenue impact projections when providers shift pricing plans. 

If there is one flat-rate provider and one pay-per-use provider, a customer with variable demand 

can often optimize spend either through a pure pay-per-use strategy (the entire allocation flows 

from the pay-per-use node), or through a hybrid allocation.23 

A penalty function associated with a feasible but not perfect allocation (excess resources) or an 

insufficient allocation (insufficient resources) can be reduced to a level of 
 

  
 of its value for an 

individual workload by aggregating workloads when the individual demand functions       are 

independent24.  This means that midsize providers can reasonably compete with large or 

infinitely large providers, since   does not need to be very large for the penalty function to get 

close to zero. 

Suppose the transition function   does not satisfy the on-demand axiom, but still attempts to 

respond to shifts in      with a new allocation        after some delay   in time.  The penalty 

function corresponds to a current imperfect allocation, either feasible or insufficient, and is 

based on   and  .  The faster that       wanders, and the larger the delay  , the larger the 
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 Joe Weinman, “The Market for Melons: Quantity Uncertainty and the Market Mechanism”” 
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 Joe Weinman, “Mathematical Proof of the Inevitability of Cloud Computing.” 
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penalty will be.  We can characterize the size of the penalty based on      : which may be 

linear, a random walk, an exponential (not exponential distribution, but    ), etc.25 

 

8. Relationship to Other Models 
 

This structure for cloud is motivated by leveraging insights gained in the half century or more of 

formal model development in areas such as Petri nets and finite state automata, but not limited 

by it. 

As in Petri nets, a graph model of a cloud is important, indicating various nodes who may act as 

customers, suppliers, or traders who exchange one resource for another.  However, Petri nets 

often distinguish between ―places‖ and ―transitions‖ and also use multi-arcs.  We do not need 

that complexity; although we may later—as an overlay to the core model—choose to partition 

nodes into various subsets. 

Network flow models define capacities along edges, but nodes are unlabeled except for the 

source node and the sink node.  A maximum flow along an edge may be less than or equal to 

the defined capacity, but no more.  Here, we place ―capacities‖ on the nodes, rather than the 

edges.  However, flows on edges are still constrained by capacity: namely, the sum of the 

outflows from a node cannot exceed the sum of the inflows together with the (possibly negative 

in one or more dimensions) capacity of the node for it to be a feasible flow. 

As with formal Turing machine, finite state automata, and Petri net definitions, we are interested 

in behavior over time.  Consequently, we also have a   function or transition relation.  In the 

same way that a   function often integrates multiple inputs, or criteria, for example, current head 

position on the tape, current state, currently read symbol, and then may generate one or more 

outputs, e.g., head move left or right, a next state, and/or an output symbol, our cloud structure 

integrates multiple inputs (resources, allocation, location, and pricing) to generate multiple 

outputs in the same categories. 

A Turing or finite-state machine begins its   function operation in an initial state    and then may 

move to other ―states‖ within  .  This is, however, a convenient fiction: the true ―state‖ of the 

machine depends on not only the state of the finite control, but also the state of the tape (what is 

its current complete, possibly infinite string of written symbols from   ) and the state of the head 

relative to the tape.  This is referred to as an ―Instantaneous Description,‖ but today we would 

recognize it as ―state.‖  In our model, the state is the combination of node resource quantities 

and the current allocation and the location of the nodes and the pricings. 

As with network flow models, we use weighted edges.  However, the semantics in network flow 

models involve edge capacities, here we are interested in edge distances.  This is to model the 
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physical dispersion of the cloud, and the possible movement of various nodes which may act as 

suppliers, customers, or traders. 

In Petri nets, the markings evolve in accordance with the transitions, and in Turing machines, 

the ―markings,‖ i.e., symbols on the tape, and the state of the automaton evolve as the machine 

operates.  In our model, there are a set of interacting processes: shifts in supply and demand 

may cause changes in pricing and in allocation flows, which in turn can influence supply and 

demand and pricing, and so on. 

The definitions of Finite State Automata, Turing machines, and Petri nets, although widely 

accepted, appear to be somewhat deficient in the completeness of formal modeling in several 

respects.  For example, the basic formal model of a one-way infinite tape does not include either 

the tape or the notion of time.  Another way to look at this is that if we were to write a program 

that modeled a Turing machine, it would certainly require an array along the lines of ―Tape[k] 

of Type Symbol", or else it would not be very useful.  One might argue that a counter 

variable "Time" would also be helpful, although not required.  Discrete time is, in effect, a result 

of iteration, and one can argue that discrete steps be explicity recognized (e.g., 

 for(time=0;time++;True){ doiteration();}") or implicitly represent the number of 

iterations since the initial state, say    (e.g., ―while(True){doiteration();}).  Because 

we take time for granted, we arguably err either way by including it or excluding it explicitly. 

The model of a cloud proposed here encompasses a broad variety of other models: networks, 

network flow models, Markov processes, Turing machines and other finite state automata, Petri 

nets, etc.  We’ve highlighted some similarities and differences.  What would also be of interest is 

highlighting equivalences.  As an example, since   can be any computable process, it certainly 

already is equivalent to a Turing machine.  However, it might be of interest to model the tape of 

a one-tape Turing machine as an infinitely long path of vertices   in an infinite graph   within a 

cloud structure.  A one-dimensional resource vector could encode symbols from the alphabet,, 

thus     can model the tape.  And the   function can easily encode the finite state machine 

logic, ―writing‖ symbols by adjusting resource vectors and moving the head, and ensuring 

constraints, such as that any tape square, i.e., vertex, has only one valid value at a given time. 

 

9. Summary 
 

The main purpose of this document is to illustrate that appropriate formalisms can be used to 

rigorously model ―clouds,‖ whether in computing or in other domains.  Any such model, of 

course, does not represent the entire complexity of the real world.  However, models can help 

elucidate characteristics that are of use in understanding real world behaviors.  It is my hope 

that if nothing else, this paper is an existence proof that one can develop cloud models that 

have a meaningful degree of rigor, and that others will be encouraged to extend or modify the 

one proposed here, or to develop their own. 
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Appendix 
 

We are modeling time-varying systems and processes.  By system and process, we can use the 

following eloquent definitions from Bart Meijer: 

A ―process‖ is a sequence of transformations that cause the input(s) of the process to be 

converted into a desirable output.  A ―system‖ is a meaningful set of elements and relations.  

The relations represent both interactions between elements and interactions with the 

environment of the system.26 

We often use terms like sets, functions, and processes informally.  However, they also have 

formal definitions, which we will occasionally refer to. 

Briefly, a set is a collection of objects, e.g.,        , where each object appears at most once.  

An ordered pair, e.g.,      , lets us impose order on the objects:       is different than 

     , unless    , but may be considered to be a set, for example,                  .  

A vector in an ordered tuple, which also may be considered as a set using a similar construct.  

While we may not normally think of it in this way, a function        is also just a set of ordered 

pairs, for example, the function      on the natural numbers is the set                 

  9   .  Finally, a process may be viewed as a type of function that takes one or more inputs 

and generates one or more outputs.  Such a process may be thought of as a finite or infinite set 

of relations among elements that relate input(s) to output(s), or as a computation that generates 

such relationships dynamically.  For example, the ―process‖ of interchanging two natural 

numbers can be viewed as a relation between        , which in turn is just a countable 

set of 4-tuples                                  , e.g.,                                

                                , or a function from    onto itself. 

We want to model resources and resource allocations.  In simple models, we may only have 

one type of resource.  In others, we may have many.  If there are   different types of resources, 

we will use values from the vector space       , which is the real-valued  -dimensional vector 

space on the field of reals.  As is customary, we use   as shorthand for              
       

. 

In a vector space, the relation ― ‖ is not straightforward.  When there is a norm on the vector 

(e.g., ―distance‖ on the plane, where          
    

  ), there is a mapping from vectors to 

reals, and reals have the relation ― ‖ defined.  However, this is not useful to us, as the different 

dimensions in our space signify different objects, e.g., servers and storage. For our purposes, 

we will use a definition of ― ‖ that makes   a partially ordered vector space, namely that 

                          if and only if                    .  This satisfies the 

                                                           
26

 Bart R. Meijer, “Reducing Complexity through Organisational Structuring in Manufacturing and Engineering.” 
Manufacturing Complexity Network Conference April 2002, University of Cambridge. 
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requirements for a partially ordered vector space, namely that            , and that if 

               .   

Formal models of computation are often defined using n-tuples.  For example, a deterministic 

finite state automaton can be defined27 as a 5-tuple               where   is a set of states,   

is the input alphabet,    is the initial state,         is the transition function,    is the initial 

state, and     is the set of final states. 

A Turing machine, which is like a finite state automaton but not only ―reads‖ symbols and thus 

―recognizes‖ strings, but can also ―writes‖ symbols and thus can calculate (―recursively 

enumerate.)  Thus, a Turing machine adds two more components:   and  .   , the set of output 

symbols, which is a superset of   and also includes the blank symbol  .28 

A marked Petri net can be defined29 as a 5-tuple            , where   is a set of places,   is a 

set of transitions,   is an input function,   is an output function, and        , i.e., maps places 

to the non-negative integers.  Surprisingly, most formal models of Petri nets seem to ignore 

formalizing a transition function that is at the heart of ―executing‖ or ―firing‖ a Petri net, and most 

models in general shy away from formalizing time.  Although perhaps overly rigorous, we do 

both here. 

A group30 is a mathematical structure comprising a set and an operator, satisfying the group 

axioms: closure, associativity, identity, and invertibility, and if it is Abelian, commutativity.  

Similarly, we have defined a cloud as a mathematical / graph theoretic structure that satisfies 

the cloud axioms: common, location-independent, online, utility, and on-demand. 

 

                                                           
27

 John E. Hopcroft, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-
Wesley, 1979. 
28

 Hopcroft and Ullman. 
29

 James L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981. 
30

 I. N. Herstein, Topics in Algebra, 2
nd

 Ed., John Wiley & Sons, 1975. 


